手机浏览器扫描二维码访问
屋子外。
看着急匆匆跑回屋内的小牛,徐云隐约意识到了什么,也快步跟了上去。
“嘭——”
刚一进屋,徐云便听到了一道重物撞击的声音。
他顺势看去,只见此时小牛正一脸懊恼的站在书桌边,左手握拳,指关节重重的压在桌上。
很明显,刚才小牛对着这张书桌来了波蓄意轰拳。
徐云见状走上前,问道:“牛顿先生,您这是”
“你不懂。”
小牛有些烦躁的挥了挥手,但没几秒便又想到了什么:“肥鱼,你——或者那位韩立爵士,对数学工具了解吗?”
徐云再次装傻犯楞的看了他一眼,问道:“数学工具?您是说尺子?还是圆规?”
听到这番话,小牛的心立时凉了一半,但话说了半截总不能就这样停住,便继续道:“不是现实的工具,而是一套能够计算变化率的理论。
比如刚才的色散现象,那是一种瞬时的变化率,甚至还可能牵扯到某些肉眼无法见到的微粒。
而要计算这种变化率,我们就需要用到另外一种可以连续累加的工具,去计算折射角的积。
比如n个a+b相乘,就是从a+b中取一个字母a或b的积,例如(a+b)2=a2+2ab+b2算了,我估计你也听不懂。”
徐云似笑非笑的看了他一眼,说道:“我听得懂啊,杨辉三角嘛。”
“嗯,所以还是准备一下等下去威廉舅等等,你说什么?”
小牛原本正顺着自己的念头在说话,听清徐云的话后顿时一愣,旋即猛然抬起头,死死地盯着他:“羊肥三搅?那是什么?”
徐云想了想,朝小牛伸出手:“能把笔递给我吗,牛顿先生?”
如果这是在一天前,也就是小牛刚见到徐云那会儿,徐云的这个请求百分百会被小牛拒绝。
甚至有可能会被再送上一句‘你也配?’。
但随着不久前色散现象的推导,此时的小牛对于徐云——或者说他身后的那位韩立爵士,已经隐约产生了一丝兴趣与认同。
否则他刚刚也不会和徐云多解释那么一番话了。
因此面对徐云的要求,小牛罕见的递出了笔。
徐云接过笔,在纸上快速的写画了一个图:1111211331(请忽略省略号,不加的话会自动缩进,晕了)徐云一共画了八行,每行的最外头两个数字都是1,组成了一个等边三角形。
熟悉这个图像的朋友应该知道,这便是赫赫有名的杨辉三角,也叫帕斯卡三角——在国际数学界,后者的接受度要更高一些。
但实际上,杨辉发现这个三角形的年份要比帕斯卡早上四百多年:杨辉是南宋生人,他在1261年《详解九章算法》中,保存了一张宝贵图形——“开方作法本源”
图,也是现存最古老的一张有迹可循的三角图。
不过由于某些众所周知的原因,帕斯卡三角的传播度要广很多,一些人甚至根本不认杨辉三角的这个名字。
因此纵有杨辉的原笔记录,这个数学三角形依旧被叫做了帕斯卡三角。
但值得一提的是帕斯卡研究这幅三角图的时间是1654年,正式公布的时间是1665年11月下旬,离现在还有整整一个月!
这也是徐云为什么会从色散现象入手的原因:色散现象是很典型的微分模型,甚至要比万有引力还经典,无论是偏折角度还是其本身的“七合一”
妻子背叛,对方是县里如日中天的副县长!一个离奇的梦境,让李胜平拥有了扭转局势的手段!即将被发配往全县最穷的乡镇!李胜平奋起反击!当他将对手踩在脚下的时候,这才发现,这一切不过只是冰山一角!斗争才刚刚开始!...
天才中医凌游,在大学毕业后为逝世的爷爷回村守孝三年,并且继承了爷爷生前经营的医馆三七堂。可突然有一天,一群大人物的到来,让他的人生出现了转折,本想一生行医的他,在经历了一些现实的打击之后,他明白了下医医人,上医医国的道理,为了救治更多的人,从而毅然决然的走向了官场,游走在政军商等各种圈子。从赤脚郎中,到执政一方,从懵懂青涩,到老成练达,看凌游如何达成他心中安得广厦千万间,大庇天下寒士俱欢颜的崇高理想。...
性格嚣张的林飞扬走马上任镇委书记当天就得罪了顶头上司,让大领导颜面无存,差点被就地免职,且看这个嚣张到骨子里的家伙如何凭借孙子兵法和三十六计勇闯重重危机,智破层层陷阱,在官场上混得风生水起,扶摇直上…...
草根男人赵潜龙怀揣为民之念,投身仕途。且看他如何一路横空直撞,闯出一条桃运青云路,醒掌绝对权力醉卧美人膝...
官场是什么?官场是权力的游戏。官场远比江湖更为险恶。千帆竞渡百舸争流!跨过去那就是海阔任潮涌风劲好扬帆!官场的规矩是什么?正确就是官场的最大规矩!重活一世。刘项东洞悉一切。他不仅能正确,还会一直正确下去!重生是风自身为鹏大鹏一日同风起,这辈子,我刘项东要扶摇直上九万里!...
简介我叫江羽,本想一直留在山上陪着我的绝色师父,却被师父赶去祸害未婚妻了。而且多少?九份婚书!?...