手机浏览器扫描二维码访问
2.3检索增强生成技术
RAG(Retrieval-AugmentedGeion)技术是一种结合了信息检索(Retrieval)和文本生
成(Geion)的自然语言处理(NLP)方法。
核心思想是将传统的检索技术与现代的自然语言
生成技术相结合,以提高文本生成的准确性和相关性。
它旨在通过从外部知识库中检索相关信息来
辅助大型语言模型(如GPT系列)生成更准确、可靠的回答。
在RAG技术中,整个过程主要分为三个步骤如图2.2所示:索引(Indexing)、检索
(Retrieval)和生成(Geion)。
首先,索引步骤是将大量的文档或数据集合进行预处理,将
其分割成较小的块(k)并进行编码,然后存储在向量数据库中。
这个过程的关键在于将非结
构化的文本数据转化为结构化的向量表示,以便于后续的检索和生成步骤。
接下来是检索步骤,它
根据输入的查询或问题,从向量数据库中检索出与查询最相关的前k个k。
这一步依赖于高效
的语义相似度计算方法,以确保检索到的k与查询具有高度的相关性。
最后是生成步骤,它将
原始查询和检索到的k一起输入到预训练的Transformer模型(如GPT或BERT)中,生成最
终的答案或文本。
这个模型结合了原始查询的语义信息和检索到的相关上下文,以生成准确、连贯
且相关的文本。
RAG的概念和初步实现是由DouweKiela、PatrickLewis和EthanPerez等人在2020年首次
提出的。
他们在论文《Retrieval-augmentedgeionforknowledge-intensivenlptasks》
中详细介绍了RAG的原理和应用,随后谷歌等搜索引擎公司已经开始探索如何将RAG技术应用到搜
索结果的生成中,以提高搜索结果的准确性和相关性。
在医疗领域,RAG技术可以帮助医生快速检
索医学知识,生成准确的诊断建议和治疗方案。
2.4文本相似度计算
文本相似度计算是自然语言处理(NLP)领域的一个重要研究方向,它旨在衡量两个或多个文
本之间的相似程度。
文本相似度计算的原理基于两个主要概念:共性和差异。
共性指的是两个文本
要想从政呢,就要步步高,一步跟不上,步步跟不上,要有关键的人在关键的时刻替你说上关键的话,否则,这仕途也就猴拉稀了...
叶峰一踏上官梯就遇到两类险情一是多种危险的感情,二是各种惊险的官斗。叶峰三十六岁就被提拔为县教育局副局长,从报到那天起就被卷入这两种险情的惊涛骇浪中。他是草根出生,却有顽强的意志和搏击风浪的能力,他像一叶小舟在惊险莫测的宦海里沉浮出没,劈波斩浪,扬帆远航,步步高升。...
官场是什么?官场是权力的游戏。官场远比江湖更为险恶。千帆竞渡百舸争流!跨过去那就是海阔任潮涌风劲好扬帆!官场的规矩是什么?正确就是官场的最大规矩!重活一世。刘项东洞悉一切。他不仅能正确,还会一直正确下去!重生是风自身为鹏大鹏一日同风起,这辈子,我刘项东要扶摇直上九万里!...
阴错阳差中,仕途无望的宋立海认识了神秘女子,从此一步步走上了权力巅峰...
草根男人赵潜龙怀揣为民之念,投身仕途。且看他如何一路横空直撞,闯出一条桃运青云路,醒掌绝对权力醉卧美人膝...
意外撞见女上司在办公室和陌生男人勾勾搭搭,齐涛偷偷拍下照片,依靠这个底牌,他一路逆袭,而女领导对他也由最开始的恨,逐渐改变了态度...