手机浏览器扫描二维码访问
下次你周易有难,只要不是涉及原则问题,必然出声帮你一次。
原本吃瓜的人也都散去。
赢家肯定是周易,只是周易没有继续出来打脸了而已,算是给各方一个台阶下。
大家面子上都过得去。
而此刻,周易已经从寝室到了院长缪来的办公室。
因为缪来找周易有事。
周易有些纳闷,院长找自己干嘛。
“周易你来了,坐。”
周易坐在一张沙发椅上,只见唐平与缪来院长都在,
“之前你说想要往数论这个方向走,我们倒是给你联系了一些导师,有上京大学的,有华科院的,当然水木大学也有。”
周易没有说话,而是看着院长继续说道:
“华科院田嘢教授对于BSD猜想的研究已经取得了巨大的飞跃,回答了是否存在同余数的问题,我们上次去桦冬,也是联系了一下那边的教授,
想要拜在他的门下,也不是不可能,得通过他的考验才行。”
BSD猜想,也就是贝赫和斯维纳通-戴尔猜想,也叫椭圆曲线的BSD猜想,是当今世界七大数学难题之一。
针对解开BSD猜想时必须要回答的问题,即所谓的“是否存在同余数”
的长久质疑中,田嘢教授首次给出了答案的线索,也就是存在无数的同余数。
这个问题起源于公元11世纪的阿拉伯,至今已决定出许多同余数和非同余数,但是整个问题没有完全解决。
同余数问题与椭圆曲线之间的联系是:n为同余数当且仅当椭圆曲线E_n:
y^2=
x^3-
n^2x的秩≥1,即此方程有无穷多有理数解。
1983年,Tunnell利用此曲线的L函数L(En,s)和模形式之间的关系,给出判别同余数的一个初等方法:
一个无平方因子的正整数N是同余数,当且仅当方程2x^2+y^2+32z^2=N的整数解(x,y,z)个数为方程2x^2+y^2+32z^2=N的整数解的2倍。
如果BSD猜想对于椭圆曲线E_n正确,则反过来也是对的。
比如说,人们猜想当n
=
5,6,7(mod8)时一定是同余数。
在这些情况下,不难看出上述两个不定方程有整数解并且解数相同,所以这个猜想在BSD猜想成立的情况下是正确的。
作为数学系的学生,周易也知道这意味着什么,如他们所说那样,恐怕不久的将来,这项BSD猜想可能就要变成定理了。
要是彻底解决,恐怕华夏的第一块阿贝尔奖就要落入田教授的手中。
怪不得要考验。
以田教授的年龄早就错过了评菲尔兹奖的要求。
周易说道:
“那上京大学呢?”
唐平这时候说道:
“李教授,但是条件也不简单,都需要通过考验才行。”
周易内心诽谤,三冠,加上这么多SCI论文,都要通过考验,要不要这么变态。
“其实,水木大学我们也联系了,你要去,我们都可以送你去,加上国外的一些名校,比如帝国理工大学、东经大学,都有,看你怎么选择了。”
精神发疯文学,没有原型,没有原型,没有原型(讲三遍),请不要在评论区提真人哦。金手指奇大,cp沈天青。日六,防盗八十,上午十一点更新江繁星八岁时候看见律政电视剧里的帅哥美女环游世界谈恋爱...
朝中无人莫做官,重活一世的秦毅不是这样认为。机遇来自于谋划,时时为朝前铺路,才能高官极品!上一世,含冤入狱,前途尽毁,孤独终老。这一世,从救省城下来的女干部开始,抓住每一个机遇,加官进爵,弥补遗憾,扶摇直上九万里!...
关于永恒之门神魔混战,万界崩塌,只永恒仙域长存世间。尘世罹苦,妖祟邪乱,诸神明弃众生而不朽。万古后,一尊名为赵云的战神,凝练了天地玄黄,重铸了宇宙洪荒,自碧落凡尘,一路打上了永恒仙域,以神之名,君临万道。自此,他说的话,便是神话。...
普通人只要有机会,也可以封侯拜相。看王子枫一个普通的小人物,如何抓住机会搅动风云。每个人都可能是千里马。...
天才中医凌游,在大学毕业后为逝世的爷爷回村守孝三年,并且继承了爷爷生前经营的医馆三七堂。可突然有一天,一群大人物的到来,让他的人生出现了转折,本想一生行医的他,在经历了一些现实的打击之后,他明白了下医医人,上医医国的道理,为了救治更多的人,从而毅然决然的走向了官场,游走在政军商等各种圈子。从赤脚郎中,到执政一方,从懵懂青涩,到老成练达,看凌游如何达成他心中安得广厦千万间,大庇天下寒士俱欢颜的崇高理想。...
专栏古耽预收微臣诚惶诚恐求个收藏容棠看过一本书。书里的反派宿怀璟是天之骄子,美强惨的典型代表,复仇升级流高智商反派人设,可惜人物崩坏,不得善终。结果一朝穿越,容棠成了文中同名同姓早死的病秧...