手机浏览器扫描二维码访问
“咦,这小伙子的答题速度还不算慢嘛。”
讲台之上,作为监考老师的吴林一直在观察着王卿的答题。
当他看到别人还在做选择题的时候,王卿已经开始做大题了,还是有一丝惊讶的。
“就是不知道这小伙子的正确率怎么样,听命题组的老师说,这次的数学题非常难,就是为了杀一杀学生们的锐气。”
王卿没有在意这些,他做题的速度非常之快,还不到一个小时的时间,他就来到了最后一道大题。
“做完这道题,就可以回去了。”
王卿摩拳擦掌,跃跃欲试。
题目:证明对于任意的正实数x和y,都有(2xx)(yy)≥(x2)(y2)成立。
“这题,有一定难度啊。”
他开始思考解题的思路。
首先,他注意到这是一个不等式证明题,需要通过推导和逻辑推理来证明不等式的成立。
王卿将题目中的不等式稍作变换,将两边同时取对数,得到ln((2xx)(yy))≥ln((x2)(y2))。
“接下来,只要运用对数的性质和乘法法则,将不等式进行变换就可以了。”
王卿在草稿纸上写下,xln(2x)+yln(y)≥2ln(x)+2ln(y)。
“两边都包含了ln(x)和ln(y),通过比较系数的方式来证明不等式的成立就可以了。”
王卿继续在草稿纸上写下,他将不等式分解为两个部分进行比较,即xln(2x)≥2ln(x)和yln(y)≥2ln(y)。
针对第一个不等式,他运用对数和指数的性质进行变换,得到xln(2)+xln(x)≥2ln(x)。
然后,他将两边的ln(x)相消,得到xln(2)≥ln(x)。
“左边是常数xln(2),而右边是关于x的对数函数ln(x)。”
“这是一个典型的关于x的线性函数与对数函数的比较。”
很显然,在x>0的范围内,对数函数的增长速度要远远大于线性函数。
因此,得出结论xln(2)≥ln(x)对于所有的正实数x成立。
接下来,他将同样的推导方法应用于第二个不等式,得到yln(y)≥2ln(y)。
“左边是常数yln(y),而右边是关于y的对数函数ln(y)。”
“根据对数函数的性质,yln(y)≥2ln(y)对于所有的正实数y成立。”
王卿完成了最后一道难度系数较高的数学试题后,他满意地审视着自己的答卷。
“老师,交卷。”
他仔细检查了一遍,确认没有问题之后,再次举起手示意监考老师收卷。
前世被当副镇长的老婆离婚后,崔向东愤怒下铸成了大错,悔恨终生!几十年后,他却莫名重回到了这个最重要的时刻!他再次面对要和他离婚的副镇长老婆,这次,他会怎么做?...
精神发疯文学,没有原型,没有原型,没有原型(讲三遍),请不要在评论区提真人哦。金手指奇大,cp沈天青。日六,防盗八十,上午十一点更新江繁星八岁时候看见律政电视剧里的帅哥美女环游世界谈恋爱...
官场是什么?官场是权力的游戏。官场远比江湖更为险恶。千帆竞渡百舸争流!跨过去那就是海阔任潮涌风劲好扬帆!官场的规矩是什么?正确就是官场的最大规矩!重活一世。刘项东洞悉一切。他不仅能正确,还会一直正确下去!重生是风自身为鹏大鹏一日同风起,这辈子,我刘项东要扶摇直上九万里!...
意外撞见女上司在办公室和陌生男人勾勾搭搭,齐涛偷偷拍下照片,依靠这个底牌,他一路逆袭,而女领导对他也由最开始的恨,逐渐改变了态度...
关于永恒之门神魔混战,万界崩塌,只永恒仙域长存世间。尘世罹苦,妖祟邪乱,诸神明弃众生而不朽。万古后,一尊名为赵云的战神,凝练了天地玄黄,重铸了宇宙洪荒,自碧落凡尘,一路打上了永恒仙域,以神之名,君临万道。自此,他说的话,便是神话。...
朝中无人莫做官,重活一世的秦毅不是这样认为。机遇来自于谋划,时时为朝前铺路,才能高官极品!上一世,含冤入狱,前途尽毁,孤独终老。这一世,从救省城下来的女干部开始,抓住每一个机遇,加官进爵,弥补遗憾,扶摇直上九万里!...