手机浏览器扫描二维码访问
廖欢眼睛顿时又瞪了起来,最后呵了一声:“说的好像你就搞的出来一样。”
“我搞不出来,那也是我学生。”
胡广德毫不在意,乐呵呵地说道。
廖欢不说话了。
妈的,心里面怎么这么羡慕啊。
他们学校招生办当初的立场就不能坚定一些,把台上那孩子拉进他们学校呢?
……
台上的萧易并不知道自己的这一页ppt,却让台下产生了那么多的反应。
不过,接下来也确实到了他这场报告最重点的部分了。
“尽管望月新一教授的IuTT理论是错误的,不过,我们必须要知道的是,望月教授想要展远阿贝尔几何的想法,以及他在过程中所展现出来的数学思想,是值得我们去学习的。”
“望月教授想要利用远阿贝尔几何去解决abc猜想,有一个核心的思想,那就是将前者运用于数论领域中。”
“大略地说明一下,远阿贝尔几何究竟是什么东西,用很简单的一句话来说就是,考虑代数几何中的eta1e基本群能够给出多少代数簇本身的信息,能在多大程度上决定代数簇本身的同构类。”
“【信息】,对于数学的研究来说是一个很重要的东西,在不同形式的变化下,有时候我们所需要的数学信息会丢失,而有时候在变换成另外一个形式之后,有些信息又会变得清晰,甚至会出现一些新的信息,而这就能够帮助我们解决一些问题。”
“将远阿贝尔几何运用于数论中,就有着这样的作用。”
“但现在的问题是,远阿贝尔要如何和数论扯上关系呢?”
“那么,请让我们先回到几十年前,格罗滕迪克曾经提出过的一个函子关系。”
ppt再次翻页,新的一页,介绍的就是那给萧易带来了无限启的神秘函子。
“对于所有在p-adic域上具有良好约简的簇,应该有一种方法可以直接从p-adicéta1e上同调到晶体上同调。”
“而Frobenius同态性和hodge滤波、k张量,同k的伽罗瓦群的作用都等同于和x相关的Barsotti-Tate群。”
“基于这两个前提下,让我们思考一种可能——”
“我们引入一个具有gk作用的环Bnetiusφ,以及在将标量从ko扩展到k后进行一次过滤,会生什么?”
萧易又一次走到了黑板面前,在右半部分的空白处写了起来。
意外撞见女上司在办公室和陌生男人勾勾搭搭,齐涛偷偷拍下照片,依靠这个底牌,他一路逆袭,而女领导对他也由最开始的恨,逐渐改变了态度...
叶峰一踏上官梯就遇到两类险情一是多种危险的感情,二是各种惊险的官斗。叶峰三十六岁就被提拔为县教育局副局长,从报到那天起就被卷入这两种险情的惊涛骇浪中。他是草根出生,却有顽强的意志和搏击风浪的能力,他像一叶小舟在惊险莫测的宦海里沉浮出没,劈波斩浪,扬帆远航,步步高升。...
林风因意外负伤从大学退学回村,当欺辱他的地痞从城里带回来一个漂亮女友羞辱他以后,林风竟在村里小河意外得到了古老传承,无相诀。自此以后,且看林风嬉戏花丛,逍遥都市!...
关于永恒之门神魔混战,万界崩塌,只永恒仙域长存世间。尘世罹苦,妖祟邪乱,诸神明弃众生而不朽。万古后,一尊名为赵云的战神,凝练了天地玄黄,重铸了宇宙洪荒,自碧落凡尘,一路打上了永恒仙域,以神之名,君临万道。自此,他说的话,便是神话。...
前世被当副镇长的老婆离婚后,崔向东愤怒下铸成了大错,悔恨终生!几十年后,他却莫名重回到了这个最重要的时刻!他再次面对要和他离婚的副镇长老婆,这次,他会怎么做?...
周胜利大学毕业后,因接收单位人事处长的一次失误延误了时机,被分配到偏远乡镇农技站。他立志做一名助力农民群众致富的农业技术人员,却因为一系列的变故误打误撞进入了仕途,调岗离任,明升暗降,一路沉浮,直至权力巅峰...